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AbICraet-In a recent paper [1] it was shown that the evaluation of certain boundilll solutions for a structure
subjected to cyclic loadilll was equivalent to assumilll that the cycle time fot was sbort compared with a
stress redistribution time. Comparisons between values which are likely to occur in creep desian situations
indicated that fot may often be assumed to be small and the bounding solution may be expected to closely
approximate the actual stress history. In this paper the solution for the limitilll case when fot .... 0is evaluated
for a class of constitutive relationships which may be expressed in terms of a finite number of state variables.
Strain-hardenina viscous, visc~lastic and Bailey-Orowan equations are discussed and particular solutions
for which the residual stresses remain constant in time are derived. The solution for a non-linear visc~lastic
model indicates that, for the stationary cyclic state, the constitutive equation need only predict the creep
strain over a discrete number of cycles and need not predict the strains durilll a cycle. This observation
should considerably simplify creep analysis.

The solution of a simple example demonstrates the similarity between the predictilll of the various
constitutive relationships for isothermal problems. In fact they provide virtually identical solutions wben
expressed in terms of reference stress histories. The finite element solution of a plate containilll a bole and
subjected to variable edge loadiq is also presented for a viscous material, The solutions show bebaviour
which is similar to that of the two bar structure.

I. INTRODUCTION

In recent papers [1, 2], the following problem was considered. A body of volume V is subjected to
a quasi-static loading history P,(t) and temperature history 8(t) which remains cyclic with period
4t. The material suffers both elastic strain ~ and time-hardening creep strains 1'. Hence

f=f+1'+~

f=Cg

o {t/>"+I}ti(u)=k- ---- ogn+l

(I)

(2)

(3)

where C denotes a tensor of elastic constants, k a material constant and t/> a homogeneous
function of degree one in the components of stress g. The thermal expansion strains are given by
~. Although g and f were interpreted as the stress and strain tensors within a continuum, they
may equally well be understood as generalized stresses and strains within a structure.

At time t = 0, the body may possess a residual stress field p(O), but for large times the stress
history approaches a cyclic state, independent of this initial state when g(t) = g(t +4t). The
analysis of Ref. [1] was concerned with the behaviour in this cyclic state. The energy dissipated
per cycle is given by

(4)

and this quantity may be bounded from above and below by the dissipations associated with two
possible equilibrium stress histories:

The lower bound history g' arises when we assume ~ = ~ = 0, and corresponds to the purely
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viscous behaviour. The upper bound history g* is given by

(6)

where q. denotes the purely elastic response (y =0) and pdenotes a constant residual stress field,
i.e. any equilibrium stress field in equilibrium with zero applied loads. The optimal upper bound is
found from the condition that the accumulated creep strain corresponding to q*

(''''
.111 = Jo r(g*) dt (7)

shall be compatible, where r is given by (3).
An interpretation of this upper bound was described in [1]. The problem is characterized by

two distinct time scales, the cycle time at, and a parameter which describes the rate at which
creep is taking place. This parameter has no unique definition but may be taken as the time for
which the steady state creep strain equals the elastic strain at either an average or
"representative" stress, or a maximum stress in the cyclic state. Clearly this time scale depends
upon both the material characteristics and stresses which occur in the body, and has been
employed as a means of characterizing the stress redistribution time for a body under constant
load[2,3].

H we assume that the cycle time is small compared with this characteristic time then,
effectively, during a cycle the variation of stress is governed by elastic properties and the residual
stress remains constant, providing a stress history of the form of eqn (6). Consideration of typical
time scales which occur in design problems indicates that at is small when the lifetime of the
structure is measured in years, and the cycle time in hours. Williams and Leckie[4] have carried
out numerical solutions for a simple two bar structure and find, for parameters which are relevant
to design situations, the stress history rapidly assumes a close approximation to the upper bound
history.

The advantages of this bounding analysis are evident. The problem reduces to the
computation of a residual stress field p and the usual step by step analysis of cyclic loading, both
thermal and mechanical, becomes unnecessary. A few simple examples have been presented by
Ponter and Williams [5] and Ponter and Leckie [6], for the constitutive relationship eqns 0)-(3).
Point displacement bounds have been discussed by Ponter[7].

The principal conclusion we may draw from these considerations is that, in many
applications, the cycle time may be considered small compared with characteristic material times.
In this paper we investigate the solution which arises when at ~ 0 for the general constitutive
relationships

where
~=~+r+~

r= [(g, §)

i=~(g,§)

(8)

(9)

(0)

where f and g are arbitrary functions of the instantaneous stress state q and a vector (or possibly
tensor) of state variables §. In the ensuing analysis it is not necessary to specify these
relationships more closely, excepting that we assume that both f and g are continuous in their
arguments. Special cases of these equations are given by eqn (3) where § = 0 and strain-hardening
where § =11 and f =g. Further examples are provided by constitutive relations derived from
non-linear rheologicalmodels and the Bailey-Orowan model[9, 10]. Minimum principles are then
derived from the rate problem arising from the rapid cycling solution.

In the final section a simple example involving variable load and constant temperl\ture is
presented which demonstrates that the stress histories generated for the various constitutive
relationships are very similar, and that the average displacement rates may be predicted by a
uniquely defined reference stress history. For the Bailey-Orowan model the solutions are
particularly simple to generate and provide the most straightforward indication of the reference
stress history, and may, therefore, be preferable in practice. This result is essentially the same as
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that reported by Williams and Leckie[4]. A further example of a stress concentration at a hole
exhibits similar behaviour.

However, all the material models discussed here predict continued isotropy of material
properties with deformation, and it would seem appropriate to include an equivalent effect to the
Bauschinger effect for situations where the stress reverses in sign during a cycle.

2. THE SOLUTION WHEN 4t-+0

Consider a body subject to cyclic loading and temperature history. We define by Vthe elastic
solution to the problem (i.e. !! = 0). The elastic strains

are such that i = j +~ are compatible, which gives rise to displacements compatible with any
imposed surface displacements.

Consider a cycle

toE; t E; to+at.

At any instant the stress distribution may be described as

f}'(t) =vet) +e(t)

where pet) is the instantaneous residual stress field.
The-governing variables are now transformed to a time variable T which remains independent

of at,

t = to + Tat, 0 E; T E; 1

and the constitutive relationships (8) to (10) become

i=j+y+~

j=Cg.

y = at!(f}'(to + Tat), § (to + Tat))

J=M~(f}',§)

where

E=~(E) etc.- dT-

(11)

(12)

(13)

(14)

To evaluate the changes over an entire cycle we define quantities i, I, i, g- which coincide with
{, ~, § and f}' at to and to +at but which vary linearly with time within 0< T< 1.

The average strain rate is then defined by

as

Similarly

i =(i(to+at) - f(to»/at =({(to +at) - E(to»/at

=C(e(to+ at) - e(to»/at + 6,

6= ff(f}',§)dT,

v(to +at) = U(to).

,: s(to+at)-s(to) i l
( )ds=- - = gU$ T.at 0 - -,-

(15)

(16)

The eqns (11) to (14) provide the behaviour within a cycle whereas eqns (15) and (16) provide the
behaviour over a cycle.
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In the limit as fl.t -+ 0 eqns (13) and (14) yield that i) = 0 and J = 0, and hence q. = J. As the
elastic solution depends only upon T then

(17)
and

(18)

With these substitutions the rate equations for the average rates, eqns (15) and (16) become

i = Ce + 6 (19)
where

~ = f [(!leT) + ,!(to), §(to» dT (20)

and

$ = f ~(!l(T)+'!(to),§(to»dT. (21)

As both P and s are independent of T then we need not distiJl8Uish between p and p, sand s.
These equations are supplemented by equilibrium equations for p:

PiN = 0 in V,

pijnj = 0 on ST,

where ni denotes an outward normal to S, and the compatibility of ~:

(22)

(23)

where "I denotes compatible displacement rates. Hence eqns (19) to (23) provide a rate boundary
value problem at any instant to for !. and p.

The uniqueness of these rates may easily be proven from the positive definiteness of the
complementary strain energy density

(24)

where equality occurs only when O'ij ='0. Suppose that two solutions pi and p2 with associated it
and e exist at time to. By the principle of virtual work --

(25a)

But from (19)

(2Sb)

where equality holds only when pi = p2 which must hold for consistency between (2Sa) and (2Sb).
Hence the uniqueness of p is proven.

In the following section three particular cases are considered and steady state solutions are
sought for which e= o.

4. NON-LINEAR VISCOUS MATERIAL

To provide continuity with previous work, we first consider the Norton viscous relationship,

(26)
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where k denotes a function of temperature and q, denotes a homogeneous function of degree
one. In Ref. [1] a slightly more general relationship was considered where, in the notation of this
paper, k = k(t), but no generality is lost by assuming k remains constant in time. No state
variables appear in this relationship and hence

(27)

For the cyclic state, which occurs as to -+ co then p -+ 0 and (27) and (23) become the condition for
the optimal upper bound described in [I], thereby recovering the result that the optimal bound of
(5) corresponds to the solution when !:J.t -+ O. The complete eqn (27) when p~ 0 provides a
transient problem for some assumed initial state e(O). -

5. STRAIN-HARDENING MATERIAL

Primary creep may be described by the time-hardening equation

a {q,n+l} m
Vlj=B

aUlj
n+1 t (28)

where B denotes a function of temperature and m a time index which is often given the value
m = 1/3. The creep rate becomes

. a {q,n+l} m-I
VIj = B aUlj n +1 mt . (29)

If it is assumed that the state of the material is described by the accumulated creep strain Vlj, then a
strain hardening relationship is formed by eliminating t between eqns (28) and (29) to yield

(30)

where nlj = aq, / aUIj is homogeneous of degree zero in Uk/.

In terms of the general eqns (9) and (10) f =g and p = j. Hence the equation for rapid cycling
is given by - -

(31)
where

(32)
where

(33)

and

It is worth noting that the existence of a cyclic solution for finite cycle times has never been
proven for this constitutive relationship. We find however that such a solution does exist for
!:J.t -+ O. Setting e= 0 we search for a solution of eqn (32) of the form

where p*denotes a time independent compatible strain field. Such a solution would correspond to
some, yet to be determined, initial residual stress field which subsequently remains constant in
time.

Substituting into eqn (32) and cancelling mt m
-

I from both sides yields

(34)
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(35)

Eliminating v,1 from the right hand side of (34) by means of (35) yields

(36)

where H'I is given by eqn (33). Equation (36) is now supplemented by the equilibrium equation for
P'I and compatibility of v,1. The equation has a resemblance to the expression for i'l for the
viscous material. The similarity is shown more clearly when both eqns (27) and (36) are
specialized to a uniaxial stress history which would become appropriate in, for example, the
analysis of a pin-jointed frame. Setting nil == 1 with all other nil == 0 and 41 == 00 yields,

i == kf (u + P)" doT viscous,

and

v* == B{f (u + p)"/m dTr, i == v*mt m- t strain-hardening.

When u == constant, the two relationships are formally identical, if k == Bmt m
-

t
•

(37)

(38)

6. NON·LINEAR VISCO-ELASTICITY

A further class of constitutive relationships have been discussed by Besselling[8], which are,
essentially, constitutive relationships derived from visco-elastic models composed of linear
springs and non-linear dashpots.

The ability of such models to describe creep behaviour is uncertain as they generally exhibit
excessive creep strain recovery, i.e. the recovery of inelastic strain after the removal of stress.
They also fail to exhibit creep hesitation, the small creep rate which follows a reduction in stress,
which is exhibited in most metals. These models do however describe the so-called anelastic
strain, a recoverable primary creep strain which can be pronounced in some metals.

Consider the typical model shown in Fig. 1, a non-linear version of the standard linear solid,
much used in linear visco-elasticity theory, We generalize this model to a triaxial state of stress
by

and

'1 G '1 kA,r( 2)841
V'I == ilklUIc/ = 1'1' UIc/ 800:1

• 2 k A," ( ) 841
Vil= 2'1' Uk' -2

Uil

0-0;+0"2

€-e+ v, V-Vl+V2

Fig. I. Uniaxial non-linear visco-elastic model, which forms the basis ofconstitutive relationships (39) to (42).

(39)

(40)

(41)

(42)
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Here rand n are creep indices and cf> denotes, as before, a homogeneous function of degree
unity. To transform these equations into the form of eqns (9) and (to) a single internal state
variable is identified with a fl' the stress in the spring of the Voight element. Equating Sil = a fl eqn
(39) to (42) may be written in the form

(43)

(44)

where Li/b denotes the inverse of Gilleh i.e.

(45)

For rapid cyclic loading

For the cyclic solution SII = 0 providing equation for Slel in terms of PId. The average rate is given
by

(47)

For the cyclic state as both Plel and Sid are zero the resulting expression is identical to the average
strain rate provided by the case k, = 0, i.e. the non-linear Maxwell model without the Voight
element. Hence the value of {JId and i'l are entirely independent of both s'" and the characteristics
of the Voight element. In other words, as the average creep rate ill and PId are computed from the
accumulation over a cycle, any element of the constitutive relationship which provides no
accumulation of strain may be effectively ignored when considering the cyclic behaviour. A
constitutive relationship which provided the correct accumulation of strain per cycle for cyclic
stress histories is all that is required for the evaluation of the rapid cyclic behaviour.

If it is accepted that a design problem involves rapid cycling, this analysis implies that it is not
necessary to develop constitutive relationships which are capable of predicting the strain history
within a cycle, but only over a discrete number of cycles. This observation should considerably
simplify the search for suitable constitutive relation for creep.

7. THE BAILEY-OROW AN MODEL

Finally we discuss a constitutive equation which includes the effect of thermal recovery, and
has been discussed by Ponter and Leckie [9],

S= h(s)f - res)

(48a)

(48b)

where S denotes an internal state variable, the yield stress and f denotes a function defined by

f(cf>-s»O cf>=s
f(cf>-s)=O cf><s.

The functions hand r are given by

When all is constant, cf> = sand s =0 then

(49)
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(50)

and stationary state creep is recovered. The quantities k I and k2 are both functions of the
instantaneous temperature, although for alI practical purposes k. can be considered as
independent of temperature.

The average creep rate for rapid cycling is given by

(5Ia)

(SIb)

for the cyclic state when s= 0, then, as q, ~ s

If we denote the instant when the maximum occurs by 'To with corresponding q,o, then

(52)

by eliminating f from (5Ia) and (SIb). Hence the average creep rate is that of the steady state
creep rate of the stress in the history UII('T)+PiJ(to) which maximizes q, when the effects of
temperature are averaged over a cycle. This result was given in a different way in [to}.

The eqn (52) provides the average creep rate when a distinct continuous time interval (or
instant) occurs when q,o remains constant. There remains the possibility that q, achieves equal
maximum values at two or more distinct instants 'To, 'Th 'T2 etc. Consider the case where two times
occur, 'To and 'TI where q, achieves equal values q,o = q,\ which are greater than at any other time.
Equation (5Ia) and (5tb) now yield

where ao and a\ are the contributions to f~f d'T at 'To and 'T\. Hence

(53)

and 611 becomes any linearly interpolated value of the stationary state values corresponding to 'To

and 'T •.

8. MINIMUM PRINCIPLES

Consider a body subject to a rapid cyclic history of loading P,(t) over part of its surface ST
and surface displacements over Su the remainder of S. At some time to the current residual stress
P,j is assumed known. The minimum principles are concerned with the average strain,
displacement and residual stress rate at this instant.

The elastic strain energy density U(EII) is given by

(54)

where GIjtI is the inverse of CIjtI. Both U and 0, defined by (24) are assumed to be convex
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(55)

(56)

At time t = to, the actual average strain rate is given by il/' Consider an arbitrary compatible
strain rate field iij which gives rise to zero displacement rate on Su.

Theorem 1: Amongst all compatible strain rate fields h ii/ minimizes

This result follows when EI/= iij- 61/ and Eij= iii - 6,/ are substituted into (55). On noting (19)
then (55), integrated over the volume V, becomes

By the principle of virtual work

and the result then follows.
Theorem 2: Amongst all equilibrium stress rate fields PIT the actual field PI/ provides the

absolute minimum of

where 61i is given by eqn (20).
The result follows from the convexity condition (56) with 0':/ =PIT and uij =PIi' the actual

residual stress rate field. On noting (19) the convexity condition (56) becomes, when integrated
over the volume,

By the principle of virtual work,

and the result follows.
Theorem 1 provides the basis of a finite element method which will be discussed in [11].

9. AN EXAMPLE

To indicate the type of information which may be gained from the analysis described above, a
simple two bar structure is analysed in this section, and a result due to Williams and Leckie [4] is
reproduced.

Consider the structure shown in Fig. 2. Two bars of equal cross-sectional area A and length t
and 4t are restrained, under the action of an axial load P, to suffer equal axial extension. The
elastic solution is given by

(57)
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Fig. 2.
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p

Pt----...,

"p -----~---

t:. t/2 6 t

Fig. 3.

and the structure therefore has an elastic stress concentration factor of 4. A residual stress field is
given by

(58)

The load P follows a cyclic history of the form shown in Fig. 3, where the load parameter A
varies through the range

-1<A<1.

The extreme cases corresponding to constant load (A = 1) and equal times at ± P (A = -1). The
rapid cycling solution was generated for both the viscous, strain-hardening and Bailey-Orowan
constitutive relationship, for which the average strain rates are given by eqns (37), (38) and either
(52) or (53).

Viscous material
The value of R for the rapid cycling solution is given by the compatibility equation

i.e.

(59)

which, on substitution of (57) and (58) yields on eqn for RIP. Equation (59) was solved
numerically by Newton's method. The variation of RIP with A for n = 3,5 and 7 are shown in
Fig. 4. The dashed lines correspond to the value corresponding to A = 1, the steady state solution
for P constant. It is clear that RIP and hence Ul and U2 for the maximum load varies very little
with A for -0.3 < A< 1, and hence the stress histories are little effected by the value of the
smaller load AP. For - 1< A< OJ, RIP closely approximates the value 0.4(1 +A), especially for
the higher values of n. The reaSon for this is not hard to find. For negative A, the stresses in bar 1
oscillate between near equal positive and negative values, i.e.

0.8PIA - RIA = -(0.8APIA - RIA)
and hence

RIP = 0.4(1 +A).

In bar 2 the stress history becomes

0'2 + P2 =0.2P IA +RIA =(0.6 +O.4A)P IA, 0 < T < ! }
0'2 + P2 = 0.2APIA + RIA = (0.4 +0.6A)PIA, ! < T < 1 .

(60)

(61)
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0·2

-- ---n.,. ---
-------------~5-----

1·00·80·60'40·200

0·1

Fig. 4. Variation of residual stress RIP for viscous material.

In Figs. 5-7 the average displacement rate a(A) is shown normalized with respect to the constant
load value a(l), and is compared with the results of two elementary calculations. The dashed line
for A> 0 is the displacement rate assuming the steady state solution remains valid throughout the
cycle, i.e.

a= a(1)(1 +An )/2. (62)

This solution gives a good approximation over the range - OJ < A< I. The second dashed line is
the displacement rate evaluated from the stress history (61) and gives a good approximation for
- I < A < - OJ especially for higher values of n.

The calculation (62) is of course equivalent to a reference stress calculation, where the
reference stress remains proportional to the applied load. For negative A this calculation is then
superceded by the stress history (61).

10

Stress history, equ (61) /

Y
/

/>--,-
,-/

//
/ .

//
//-'

/ .
I

0·8

0·6

04

0·2

"
__ ",<-SteadY state solution,equ(62)

-1,0 -0,8 -0'6 -0'4 -0,2 0·0 0'2 0'4 0·6 0'8 1·0

Fig.5. Variation ofaverage displacement rate for viscous material, n = 3.
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1'0

08

1-0080·60·402

0'2

00-0'6 -0'4 -0,2

Stress h~~O?,equ (51) 0.5 /~

'j =-..j.."""",,~:=-:::-=:::::-=-==-:.,"""/ __ --j---- -- --- ------, Steady state solutlOn,equ(52)

// 0·4
,/ /

/ /
/ ~;

I
I

I

-1,0

Fig.6. Variation ofaverage displacement rate for viscous material, n = 5.

1·0

Stress history, equ(61) I
~

------1----,." .
/// /

; ,
;1 ~

I -
I ;.;

" AII

08

7
/

06 - __ ....."~
Steady state solution, equ(62)

04

0-2

-1-0 -08 -06 -0'4 -02 00 02 04 06 08 ,.0

Fig. 7_Variation of average displacement rate for viscous material, n =7_

This result is not surprising, and the correlation with (62) for A> 1 bas been noted in various
ways many times before. The interesting result comes when we compare these solutions with
those of strain-hardening, and the Bailey-Orowan model.

Strain -hardening material
The rapid cycling solution requires compatibility of v* (eqn 38) and hence RIP is given

by vr;:::: 4vr, i.e.

(63)

Equation (63) was solved for RIP with m ;:::: l/3 and n :::: 3,5 and 7, When A :::: I, the integrands of
(63) are constant and hence yield the same equation as (59). The variation of RIP with A is shown
in Fig. 8 and it can be seen immediately that RIP retains a close approximation to the steady state
value (A :::: 1) for -0.3 < A< 1, and then rapidly becomes close to the value RIP;:::: 0.4(1 +A).
Hence the stress histories are very similar to those of the viscous case, with even less deviation
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0·2

0'1

0·0 0·2 0·4 0'6 0·8 1·0

Fig. 8. Variation of residual stress R /P for strain hardening with m = I/l

from the two simple approximations. The normalized average displacement rate a(A)/a(l) is
shown in Figs. 9-11 for n ::= 3, 5 and 7, and are compared with two calculations.

If we assume that a reference stress, derivable from the steady state solution remains valid,
then the displacement rate must be computed on the assumption that the cycle time is short, and
hence be given by eqn (38). Therefore, if a reference stress history follows the applied load, the
average displacement rate would be given by

a('\)::= am{f (P(t)IP)"/mr::= a(l){f (1 + A11/"')12r· (64)

This equation appears as a dashed line in Figs. 9-11 and very closely approximates the rapid
cycling solution for -0.3 < A< 1. For A< 0.3, a prediction for the stress history (61) yields

a(A)::= dmrO.6 +0.4,\ )"'''' ; (0.4 +0.6'\ )",mr

equ(65) 1'0

')
0·8

/- equ(64)
/

/
I

I
I 0·6,

I
I
I 0·4
I
I
I
I 0·2I
I
I

-1'0 -0'8 -0·6 -0'4 -0'2 0·0 0·2 0·4 0·6 0·8 1'0

Fig. 9. Variation ofaverage displacement rate, strain hardening, II =3, m =1/3.

(65)
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I
/

/'
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

-1-0 -0,8 -0,6 -0'4 -0,2

Fig. 10. Variation ofaverage displacement rate, strain hardening, n =5, m =1/3.

/

equ(65) I
~

i
/'

/'
/

I
I
I
I
I

- 0 -0'8 -0,6 -0,4 -0·2

1'0

08

0'6

0·4

0'2

00 0·2 0'4 0·6 0·8 H)

equ (64)

Fig. 1I. Variationofaveragedisplacementrate, strain hardening n = 7, m = 1/3.

and is also shown as a dashed line, and closely approximates the rapid cycling solution for
A <0.3.

It is worth noting that over a substantial range of A, a(A)/ao) remains constant and is
independent of n. This value arises in eqn (58) when we assume that A"'m ~ 1 and hence

a(A)/a(l) =O.5m =0.7937, m = 1/3

and is equivalent to assuming that all the deformation occurs when P(t) has its maximum value.

The Bailey-Orowan model
The analysis of the rapid-cycling solution for the Bailey-Orowan model is extremely simple.

For A> 1 the largest stress in both bars may be expected to occur when the applied load is at a
maximum, i.e. 0 < 7' < 1/2. Compatibility of the average creep strain rates, which equals the strain
rate at the maximum stress, then provides the solution that the stresses during 0 < 7' < 1/2 are
identical to the viscous solution for constant load. Further the average displacement rate
a(A) = a(l), the value corresponding to constant applied load P. Clearly the reference stress
history generated by the stationary state solution will give the exact answer in this case, assuming
rapid cycling.
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This solution remains valid until the stress in tension and compression are of equal value in
bar I, i.e.

RIP = 0.4(1 +A)

and the average strain rate in bar 1 becomes indeterminate (eqn 53). The average displacement
rate is now governed by the stress history in bar 2 which has the form (61) exactly. Hence the
reference stress histories which provided good approximate values of a(A) for the viscous and
strain-hardening models yield the exact values in this case.

The variations of RIP and a(A)/a(l) are shown in Figs. 12 and 13 for n = 3,5 and 7. For
A = - 1 there is an indeterminacy of a(A) as stress in both bar 1and bar 2 oscillate between equal
positive and negative values. Dashed lines, corresponding to the predictions of reference stress
histories are excluded as they are identical to the exact values.

It is interesting to compare Figs. 4, 8 and 12, the variation of RIP for the three material
models. The differences are really quite small, the strain hardening values (Fig. 8) lying between
those of the other two models.

n=7

RIp: 0'4 (1+~)

-1'0 -0,8 -0'6 -0,4 -0,2

0'2

0·1

0'0 0·6

n=5

n= 3

0'8

Fig. 12. Variation of residual stress RIP for Bailey-Orowan model.

tJ (~)

uIII

-1'0 -0'8 -0,6 -0'4 -0,2

1·0

0-8

O{i

0·4

0·2

0·0 0·2

n= 3,5 and 7

0'4

Fig. 13. Variation ofaverage displacementrate. Bailey-Orowan model.
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Comparison of the graphs for Il(A)/Il(l), Figs. 5-7,9-11 and Fig. 13 show a similar graduation
from viscous behaviour to the Bailey-Orowan model, with strain hardening lying between. In all
cases the reference stress predictions provide good approximations to the solutions, given the
exact answer for the Bailey-Orowan model. This result is essentially the same as the
observations of Williams and Leckie [4]. Further for A > 0 there exists at most a factor of 2
differences in ii(A) for all the models and for A < 0 a factor of about 3 for equal n values.
Experimental creep rates often suffer from variations which are greater than these factors,
indicating that the model adopted is relatively unimportant. On balance, the Bailey-Orowan
model appears to be preferable, as the solutions are very simple, although the situation may not
remain when more complex structures are considered. Further, very simple displacement bounds
exist for the model [l0] which indicate that, for certain classes of loading the rapid cycling
solution provides an upper bound to the displacements for longer cycle times.

The fact that the three models produce such similar solutions may however lull one into a
sense of false security. They, and all isotropic models, imply a continued state of isotropy with
developing creep strain. An effect corresponding to the Bauschinger effect in plasticity must exist
in creep, and such an effect is not included in any of the models.

Finite element solution
The development of a finite element method from the strain minimum principle of Section 8 is

described elsewhere [11]. Here the solution of a classic stress concentration problem is described,
the stress distribution around a hole in a plate subject to uniform tension, as shown in Fig. 14. The
load history is that of Fig. 3, excepting that P is now interpreted as the uniform stress state away
from the hole.

Details of the solution method and finite element mesh are given in [11] together with a wide
range of solutions. Here we discuss the viscous solutions. The maximum stress, which occurs at
A in Fig. 14, is given in Table 1 together with the minimum stress at that point for n = 3 and 5.
The general mode of behaviour of the two bar structure is clearly seen. For A = 0.5 and 0 the
maximum stress lies very close to the value for A = 1 when P remains constant. For A = -0.5,
the stress oscillates between near equal positive and negative values of U xx' For A = -1, of course
the residual stress field is zero and the stresses are given by the elastic solution, which has a

p

Fig. 14. Finite element mesh for plate subjected to uniform loading.
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Table I. Maximum and minimum values of u"" /P in element. A-Finite element solution of plate with hole

-1
1 1

A -} 0 2 1

{max 2·98 2·47 2'06 206 2·09
n=3 .

-2·98 -2·04 -0·94 0·56 2·09mill

{max 2·98 2·31 1 80 1'76 1·74
n=5 .

-2·98 -2·19 -120 0·26 1·74min

ELASTIC SOLUTION O'xx!P=2'98

Table 2. Maximum and minimum values of u71 /P in element. B-Finite element solution of plate with hole

A. -1 1
0

1
1-2 }

{min -0·93 -1·26 -1,33 -130 -1 34
n=3 max. 0·93 0·24 -0,33 -0·80 -1 ·34

{min -0·93 -1 ·24 -1·38 -1·36 -1·38
n=5 max 0·92 026 -0,38 -0'86 -1·38
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theoretical value at the point of symmetry of u",,/P = 3.00 compared with a computed value of
2.98.

In Table 2 the maximum and minimum stress at point B are given. The maximum values
remains relatively insensitive to the value of n and A, and clearly no drastic effects occur due to
variable load.

Therefore we see that the. behaviour of a stress concentration for a creeping body subject to
variable proportional loading is very similar to that shown in the two bar structure. Either the
maximum stress remains close to the steady state value corresponding to the maximum load, or
the stress oscillates between near equal positive and negative values with an amplitude given by
the elastic solution.

When variable temperature occurs the situation is of course more complex and this question,
for stress concentrations is discussed in [11].
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